A345315 a(n) = Sum_{d|n} d^[Omega(d) = 2], where [ ] is the Iverson bracket.
1, 2, 2, 6, 2, 9, 2, 7, 11, 13, 2, 14, 2, 17, 18, 8, 2, 19, 2, 18, 24, 25, 2, 16, 27, 29, 12, 22, 2, 36, 2, 9, 36, 37, 38, 25, 2, 41, 42, 20, 2, 46, 2, 30, 28, 49, 2, 18, 51, 39, 54, 34, 2, 21, 58, 24, 60, 61, 2, 43, 2, 65, 34, 10, 68, 66, 2, 42, 72, 64, 2, 28, 2, 77, 44, 46, 80
Offset: 1
Keywords
Examples
a(12) = Sum_{d|12} d^[Omega(d) = 2] = 1^0 + 2^0 + 3^0 + 4^1 + 6^1 + 12^0 = 14.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
Table[Sum[k^KroneckerDelta[PrimeOmega[k], 2] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 100}]
-
PARI
a(n) = sumdiv(n, d, if (bigomega(d)==2, d, 1)); \\ Michel Marcus, Jun 13 2021
Formula
From Wesley Ivan Hurt, Jul 22 2025: (Start)
a(p^k) = k + p^2 for p prime and k >= 2, else k + 1 if k = 0 or 1.
a(n) = tau(n) + Sum_{d|n} (d - 1) * c(d), where c = A064911.
Comments