cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345350 Even triangular numbers such that the next integer is nonprime.

Original entry on oeis.org

0, 120, 300, 406, 496, 528, 666, 780, 1176, 1378, 1540, 1770, 2278, 2628, 3160, 3240, 3486, 3828, 4186, 4278, 5356, 5460, 5886, 6670, 6786, 7140, 7260, 7626, 7750, 8128, 8256, 9316, 9730, 10296, 10440, 10878, 11476, 11628, 12090, 12246, 12880, 13530, 14706, 15576
Offset: 1

Views

Author

Tanya Khovanova, Jun 15 2021

Keywords

Comments

Subsequence of A000217 (triangular numbers) and A014494 (even triangular numbers).

Examples

			Even triangular numbers 6, 10, 28, 36, 66, and 78 are all followed by a prime number. Even triangular number 120 is followed by a composite number 121. Thus, a(1) = 120.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[n (n + 1)/2, {n, 0, 200}], EvenQ[#] && ! PrimeQ[# + 1] &]
    Select[Accumulate[Range[0,300]],EvenQ[#]&&!PrimeQ[#+1]&] (* Harvey P. Dale, Mar 23 2025 *)
  • PARI
    lista(nn) = for (n=1, nn, my(t=n*(n+1)/2); if (!(t%2) && !isprime(t+1), print1(t, ", "))) \\ Michel Marcus, Jun 16 2021
  • Python
    from sympy import isprime
    def A014494(n): return (2*n+1)*(2*n+1-(-1)**n)//2
    def ok(et): return not isprime(et+1)
    print(list(filter(ok, (A014494(n) for n in range(90))))) # Michael S. Branicky, Jun 15 2021