A345390 Numbers whose set of divisors contains every digit at least twice.
540, 720, 760, 810, 918, 1080, 1140, 1170, 1260, 1404, 1440, 1512, 1520, 1530, 1560, 1620, 1740, 1800, 1820, 1824, 1836, 1872, 1890, 1908, 1960, 2016, 2028, 2052, 2070, 2072, 2088, 2106, 2112, 2124, 2142, 2156, 2160, 2184, 2208, 2280, 2340, 2380, 2430, 2508, 2520
Offset: 1
Examples
The divisors of 918 are 1, 2, 3, 6, 9, 17, 18, 27, 34, 51, 54, 102, 153, 306, 459, and 918. Every digit appears at least twice. Thus, 918 is in this sequence.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Maple
q:= n-> (p-> is(min(seq(coeff(p, x, j), j=0..9))>1))(add(x^i, i= map(d-> convert(d, base, 10)[], [numtheory[divisors](n)[]]))): select(q, [$10..2600])[]; # Alois P. Heinz, Apr 21 2022
-
Mathematica
Select[Range[3000], Length[Transpose[Tally[Flatten[IntegerDigits[Divisors[#]]]]][[2]]] == 10 && Min[Transpose[Tally[Flatten[IntegerDigits[Divisors[#]]]]][[2]]] > 1 &]
-
Python
from sympy import divisors def ok(n): digits_used = {d:0 for d in "0123456789"} for div in divisors(n, generator=True): for d in str(div): digits_used[d] += 1 if all(digits_used[d] > 1 for d in "0123456789"): return True return False print([k for k in range(2521) if ok(k)]) # Michael S. Branicky, Jun 25 2022
Comments