cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345390 Numbers whose set of divisors contains every digit at least twice.

Original entry on oeis.org

540, 720, 760, 810, 918, 1080, 1140, 1170, 1260, 1404, 1440, 1512, 1520, 1530, 1560, 1620, 1740, 1800, 1820, 1824, 1836, 1872, 1890, 1908, 1960, 2016, 2028, 2052, 2070, 2072, 2088, 2106, 2112, 2124, 2142, 2156, 2160, 2184, 2208, 2280, 2340, 2380, 2430, 2508, 2520
Offset: 1

Views

Author

Tanya Khovanova, Jun 17 2021

Keywords

Comments

Compare to A095050: Numbers such that all ten digits are needed to write all positive divisors in decimal representation.

Examples

			The divisors of 918 are 1, 2, 3, 6, 9, 17, 18, 27, 34, 51, 54, 102, 153, 306, 459, and 918. Every digit appears at least twice. Thus, 918 is in this sequence.
		

Crossrefs

Programs

  • Maple
    q:= n-> (p-> is(min(seq(coeff(p, x, j), j=0..9))>1))(add(x^i, i=
         map(d-> convert(d, base, 10)[], [numtheory[divisors](n)[]]))):
    select(q, [$10..2600])[];  # Alois P. Heinz, Apr 21 2022
  • Mathematica
    Select[Range[3000], Length[Transpose[Tally[Flatten[IntegerDigits[Divisors[#]]]]][[2]]] == 10 && Min[Transpose[Tally[Flatten[IntegerDigits[Divisors[#]]]]][[2]]] > 1 &]
  • Python
    from sympy import divisors
    def ok(n):
        digits_used = {d:0 for d in "0123456789"}
        for div in divisors(n, generator=True):
            for d in str(div): digits_used[d] += 1
            if all(digits_used[d] > 1 for d in "0123456789"): return True
        return False
    print([k for k in range(2521) if ok(k)]) # Michael S. Branicky, Jun 25 2022