cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A353066 Numbers whose set of divisors contains every digit at least three times.

Original entry on oeis.org

1140, 1890, 2280, 2340, 2610, 2660, 2700, 2808, 2880, 2940, 2970, 3420, 3480, 3510, 3540, 3600, 3654, 3672, 3780, 3870, 3920, 3952, 3990, 4032, 4140, 4320, 4368, 4380, 4410, 4560, 4590, 4680, 4740, 4760, 4770, 4860, 4896, 4940, 4950, 5130, 5220, 5320, 5400, 5454
Offset: 1

Views

Author

Tanya Khovanova, Apr 21 2022

Keywords

Comments

Every multiple of a term is also a term.

Examples

			The divisors of 1140 are: 1, 2, 3, 4, 5, 6, 10, 12, 15, 19, 20, 30, 38, 57, 60, 76, 95, 114, 190, 228, 285, 380, 570, 1140. Digits tally from 0 to 9: 8, 10, 6, 4, 3, 6, 3, 3, 4, 3. The minimum is 3, thus, 1140 is in this sequence.
		

Crossrefs

Cf. A059436 (at least n times).
Subsequence of A095050 (at least once) and of A345390 (at least twice).

Programs

  • Maple
    q:= n-> (p-> is(min(seq(coeff(p, x, j), j=0..9))>2))(add(x^i, i=
         map(d-> convert(d, base, 10)[], [numtheory[divisors](n)[]]))):
    select(q, [$10..5555])[];  # Alois P. Heinz, Apr 21 2022
  • Mathematica
    Select[Range[10000], Length[Tally[Flatten[IntegerDigits[Divisors[#]]]]] == 10 && Min[Transpose[Tally[Flatten[IntegerDigits[Divisors[#]]]]][[2]]] >= 3 &]
  • PARI
    upto(n) = { my(v = vector(n, i, -1)); for(i = 1, n, if(v[i] == -1, c = is(i); if(c == 1, v[i] = 1; for(j = 1, n\i, v[i*j] = 1; ) , v[i] = 0 ) ) ); Vec(select(x->x==1,v,1)) }
    is(n) = { my(v = vector(10, i, 3), d = divisors(n), todo = 30, i, j); for(i = 1, #d, dd = digits(d[i]); for(j = 1, #dd, if(v[dd[j]+1] > 0, v[dd[j]+1]--; todo--; if(todo <= 0, return(1) ) ) ) ); 0 } \\ David A. Corneth, Jul 11 2022
  • Python
    from sympy import divisors
    def ok(n):
        counts = [0]*10
        for d in divisors(n, generator=True):
            for di in str(d): counts[int(di)] += 1
            if min(counts) > 2: return True
        return False
    print([k for k in range(5455) if ok(k)]) # Michael S. Branicky, Apr 21 2022
    
Showing 1-1 of 1 results.