cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A346019 Number of n X n invertible matrices over GF(2) that have order 2^n-1.

Original entry on oeis.org

1, 2, 48, 2688, 1935360, 1919877120, 23222833643520, 335564785519165440, 65717007596073359769600, 21492090164219831579049984000, 66041307304745851496871108594892800, 226523509196861965428709270554756199219200, 16622838761287803491875715175557341313583022080000
Offset: 1

Views

Author

Geoffrey Critzer, Jul 01 2021

Keywords

Comments

Equivalently, a(n) is the number of n X n matrices over GF(2) whose characteristic polynomial is primitive.
2^n - 1 is the greatest order that a matrix in the general linear group GL_n(F_2) can have.

Crossrefs

Programs

  • Maple
    a:= n-> mul(2^n-2^i, i=0..n-1)*numtheory[phi](2^n-1)/((2^n-1)*n):
    seq(a(n), n=1..14);  # Alois P. Heinz, Jul 01 2021
  • Mathematica
    nn = 13; Table[EulerPhi[2^n - 1]/n, {n, 1, nn}]* Table[Product[2^n - 2^i, {i, 0, n - 1}], {n, 1, nn}]/Table[2^n - 1, {n, 1, nn}]

Formula

a(n) = A011260(n) * A002884(n)/A000225(n).

A344873 Irregular triangle read by rows. T(n,k) is the number of n X n matrices over GF(2) whose characteristic polynomial is a product of k distinct squarefree irreducible factors.

Original entry on oeis.org

1, 0, 2, 0, 2, 6, 0, 48, 112, 0, 4032, 11520, 6720, 0, 1935360, 4952064, 2856960, 0, 2879815680, 9558687744, 7871496192, 0, 23222833643520, 66748107718656, 60247322394624, 15604761231360, 0, 629183972848435200, 2137709262359494656, 2101670528396820480, 465681743169454080
Offset: 0

Views

Author

Geoffrey Critzer, Jul 12 2021

Keywords

Examples

			Triangle begins:
  1;
  0,              2;
  0,              2,              6;
  0,             48,            112;
  0,           4032,          11520,           6720;
  0,        1935360,        4952064,        2856960;
  0,     2879815680,     9558687744,     7871496192;
  0, 23222833643520, 66748107718656, 60247322394624, 15604761231360;
		

Crossrefs

Cf. A002884, A001037, A345463 (column k=1), A346164 (row sums).

Programs

  • Mathematica
    nn = 8; A001037 = Table[1/n Sum[MoebiusMu[n/d] 2^d, {d, Divisors[n]}], {n, 1, nn}];Prepend[Drop[Map[Prepend[#, 0] &,Map[Select[#, # > 0 &] &,Table[Product[2^n - 2^i, {i, 0, n - 1}], {n, 0,nn}] CoefficientList[Series[Product[(1 + v u^i/(2^i - 1))^A001037[[i]], {i, 1, nn}], {u, 0, nn}], {u, v}]]], 1], {1}] // Grid

Formula

Sum_{n>=0} Sum_{k>=0} T(n,k)*y^k*x^n/A002884(n) = Product_{d>=1} (1 + y*x^d/(2^d-1))^A001037(d).
Showing 1-2 of 2 results.