A345477 Numbers that are the sum of six squares in ten or more ways.
81, 84, 86, 89, 92, 93, 95, 100, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150
Offset: 1
Keywords
Examples
84 = 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 8^2 = 1^2 + 1^2 + 1^2 + 3^2 + 6^2 + 6^2 = 1^2 + 1^2 + 1^2 + 4^2 + 4^2 + 7^2 = 1^2 + 1^2 + 2^2 + 2^2 + 5^2 + 7^2 = 1^2 + 1^2 + 4^2 + 4^2 + 5^2 + 5^2 = 1^2 + 2^2 + 2^2 + 5^2 + 5^2 + 5^2 = 1^2 + 2^2 + 3^2 + 3^2 + 5^2 + 6^2 = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 8^2 = 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 7^2 = 2^2 + 4^2 + 4^2 + 4^2 + 4^2 + 4^2 = 3^2 + 3^2 + 3^2 + 4^2 + 4^2 + 5^2 so 84 is a term.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from Sean A. Irvine)
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**2 for x in range(1, 1000)] for pos in cwr(power_terms, 6): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 10]) for x in range(len(rets)): print(rets[x])
Formula
Conjectures from Chai Wah Wu, Jan 05 2024: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 20.
G.f.: x*(-x^19 + x^18 - x^17 + x^16 - x^15 + x^14 - x^13 + x^12 - x^11 + x^10 - 4*x^8 + 3*x^7 + x^6 - 2*x^5 + x^3 - x^2 - 78*x + 81)/(x - 1)^2. (End)