cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A345520 Numbers that are the sum of seven cubes in two or more ways.

Original entry on oeis.org

131, 159, 166, 173, 185, 192, 211, 222, 229, 236, 243, 248, 255, 257, 262, 264, 269, 274, 276, 281, 283, 285, 288, 290, 292, 295, 299, 300, 302, 307, 309, 311, 314, 318, 320, 321, 325, 332, 333, 337, 339, 340, 344, 346, 348, 351, 353, 355, 358, 359, 360, 363
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			159 is a term because 159 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])

A344806 Numbers that are the sum of six squares in two or more ways.

Original entry on oeis.org

21, 24, 29, 30, 33, 36, 38, 39, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			24 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 4^2
   = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2
so 24 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])

A345480 Numbers that are the sum of seven squares in three or more ways.

Original entry on oeis.org

31, 34, 37, 39, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			34 is a term because 34 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 5^2 = 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 3^2 = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])

A345489 Numbers that are the sum of eight squares in two or more ways.

Original entry on oeis.org

23, 26, 29, 31, 32, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			26 is a term because 26 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 4^2 = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])

A345478 Numbers that are the sum of seven squares in one or more ways.

Original entry on oeis.org

7, 10, 13, 15, 16, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

David Consiglio, Jr., Jun 19 2021

Keywords

Examples

			10 is a term because 10 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2.
		

Crossrefs

Programs

  • Mathematica
    ssQ[n_]:=Count[IntegerPartitions[n,{7}],?(AllTrue[Sqrt[#],IntegerQ]&)]>0; Select[ Range[ 80],ssQ] (* _Harvey P. Dale, Jun 22 2022 *)
  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 1])
        for x in range(len(rets)):
            print(rets[x])

Formula

From Chai Wah Wu, Jun 12 2025: (Start)
All integers >= 21 are terms. See A345508 for a similar proof.
a(n) = 2*a(n-1) - a(n-2) for n > 9.
G.f.: x*(-x^8 + x^7 - x^6 + x^5 - x^4 - x^3 - 4*x + 7)/(x - 1)^2. (End)
Showing 1-5 of 5 results.