A345491 Numbers that are the sum of eight squares in four or more ways.
32, 38, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105
Offset: 1
Keywords
Examples
38 is a term because 38 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 4^2 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 5^2 = 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..1000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**2 for x in range(1, 1000)] for pos in cwr(power_terms, 8): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 4]) for x in range(len(rets)): print(rets[x])