cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A345534 Numbers that are the sum of eight cubes in four or more ways.

Original entry on oeis.org

256, 347, 382, 401, 408, 427, 434, 438, 445, 464, 471, 478, 480, 490, 497, 499, 502, 504, 506, 511, 516, 523, 530, 532, 534, 537, 560, 565, 567, 569, 571, 578, 586, 593, 595, 597, 600, 602, 604, 605, 611, 612, 616, 619, 621, 623, 624, 626, 628, 630, 635, 642
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			347 is a term because 347 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 4])
        for x in range(len(rets)):
            print(rets[x])

A345481 Numbers that are the sum of seven squares in four or more ways.

Original entry on oeis.org

37, 40, 42, 45, 46, 48, 49, 50, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			40 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 4^2 + 4^2
   = 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 5^2
   = 1^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2
   = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2
so 40 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 4])
        for x in range(len(rets)):
            print(rets[x])

A345490 Numbers that are the sum of eight squares in three or more ways.

Original entry on oeis.org

32, 35, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			35 is a term because 35 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 5^2 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 3^2 = 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])

A345492 Numbers that are the sum of eight squares in five or more ways.

Original entry on oeis.org

46, 47, 49, 53, 54, 55, 56, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			47 is a term because 47 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 5^2 = 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 4^2 = 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 4^2 + 4^2 = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 5^2 = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 5])
        for x in range(len(rets)):
            print(rets[x])

A345501 Numbers that are the sum of nine squares in four or more ways.

Original entry on oeis.org

33, 36, 39, 41, 42, 44, 45, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			36 is a term because 36 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 5^2 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 3^2 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2 = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 4])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-5 of 5 results.