cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A345522 Numbers that are the sum of seven cubes in four or more ways.

Original entry on oeis.org

470, 496, 503, 603, 627, 634, 653, 659, 685, 690, 692, 711, 712, 747, 751, 754, 761, 766, 768, 773, 775, 777, 780, 783, 787, 792, 794, 812, 813, 829, 831, 836, 838, 842, 843, 845, 857, 859, 864, 867, 871, 874, 875, 881, 883, 885, 890, 892, 894, 899, 900, 901
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			496 is a term because 496 = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 4])
        for x in range(len(rets)):
            print(rets[x])

A345533 Numbers that are the sum of eight cubes in three or more ways.

Original entry on oeis.org

223, 230, 237, 249, 256, 263, 270, 275, 282, 284, 286, 289, 291, 293, 308, 310, 312, 319, 326, 345, 347, 349, 354, 364, 371, 373, 375, 378, 380, 382, 385, 386, 387, 389, 397, 399, 401, 404, 406, 408, 410, 412, 413, 415, 420, 423, 427, 434, 438, 439, 441, 443
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			230 is a term because 230 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])

A345535 Numbers that are the sum of eight cubes in five or more ways.

Original entry on oeis.org

471, 497, 504, 597, 623, 628, 630, 635, 642, 649, 654, 661, 667, 680, 686, 691, 693, 712, 717, 719, 723, 728, 736, 738, 741, 743, 752, 754, 755, 762, 769, 774, 776, 778, 780, 781, 783, 784, 785, 788, 791, 793, 795, 797, 800, 802, 804, 810, 813, 814, 815, 817
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			497 is a term because 497 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 6^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 5])
        for x in range(len(rets)):
            print(rets[x])

A345543 Numbers that are the sum of nine cubes in four or more ways.

Original entry on oeis.org

224, 257, 264, 283, 320, 348, 355, 372, 374, 376, 381, 383, 390, 400, 402, 407, 409, 411, 413, 414, 416, 428, 435, 439, 442, 446, 450, 453, 454, 461, 465, 472, 474, 476, 479, 481, 486, 488, 491, 498, 500, 502, 503, 505, 507, 509, 510, 512, 514, 517, 519, 524
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			257 is a term because 257 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 4])
        for x in range(len(rets)):
            print(rets[x])

A345579 Numbers that are the sum of eight fourth powers in four or more ways.

Original entry on oeis.org

2933, 2948, 3013, 3173, 3188, 3557, 4148, 4163, 4213, 4228, 4293, 4388, 4403, 4453, 4468, 4643, 4772, 4837, 4883, 5012, 5123, 5188, 5203, 5268, 5333, 5363, 5378, 5398, 5428, 5443, 5508, 5538, 5573, 5603, 5618, 5668, 5683, 5733, 5748, 5858, 5923, 6052, 6163
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			2948 is a term because 2948 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 4^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 7^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 4])
        for x in range(len(rets)):
            print(rets[x])

A345786 Numbers that are the sum of eight cubes in exactly four ways.

Original entry on oeis.org

256, 347, 382, 401, 408, 427, 434, 438, 445, 464, 478, 480, 490, 499, 502, 506, 511, 516, 523, 530, 532, 534, 537, 560, 565, 567, 569, 571, 578, 586, 593, 595, 600, 602, 604, 605, 611, 612, 616, 619, 621, 624, 626, 643, 645, 656, 660, 663, 664, 668, 675, 679
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345534 at term 11 because 471 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 6^3 + 6^3 = 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 = 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3 + 5^3 + 5^3.
Likely finite.

Examples

			347 is a term because 347 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 4])
        for x in range(len(rets)):
            print(rets[x])

A345491 Numbers that are the sum of eight squares in four or more ways.

Original entry on oeis.org

32, 38, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			38 is a term because 38 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 4^2 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 5^2 = 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 4])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-7 of 7 results.