cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345509 Numbers that are the sum of ten squares in two or more ways.

Original entry on oeis.org

25, 28, 31, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			28 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 4^2
   = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2
so 28 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])
    
  • Python
    def A345509(n): return (25, 28, 31, 33, 34, 36, 37)[n-1] if n<8 else n+31 # Chai Wah Wu, May 09 2024

Formula

From Chai Wah Wu, May 09 2024: (Start)
All integers >= 39 are terms. Proof: since 20 can be written as the sum of 5 positive squares in 2 ways and any integer >= 34 can be written as a sum of 5 positive squares (see A025429), any integer >= 54 can be written as a sum of 10 positive squares in 2 or more ways. Integers from 39 to 53 are terms by inspection.
a(n) = 2*a(n-1) - a(n-2) for n > 9.
G.f.: x*(-x^8 + x^7 - x^6 + x^5 - x^4 - x^3 - 22*x + 25)/(x - 1)^2. (End)