A345514 Numbers that are the sum of six cubes in five or more ways.
1045, 1169, 1241, 1260, 1377, 1384, 1432, 1440, 1488, 1495, 1530, 1539, 1549, 1556, 1558, 1584, 1586, 1594, 1595, 1602, 1612, 1617, 1640, 1647, 1654, 1657, 1673, 1675, 1677, 1703, 1710, 1712, 1715, 1719, 1729, 1736, 1738, 1745, 1747, 1754, 1764, 1766, 1771
Offset: 1
Keywords
Examples
1169 is a term because 1169 = 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 9^3 = 1^3 + 2^3 + 5^3 + 5^3 + 5^3 + 7^3 = 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 8^3 = 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 8^3 = 3^3 + 3^3 + 3^3 + 3^3 + 7^3 + 7^3.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 6): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 5]) for x in range(len(rets)): print(rets[x])