A345522 Numbers that are the sum of seven cubes in four or more ways.
470, 496, 503, 603, 627, 634, 653, 659, 685, 690, 692, 711, 712, 747, 751, 754, 761, 766, 768, 773, 775, 777, 780, 783, 787, 792, 794, 812, 813, 829, 831, 836, 838, 842, 843, 845, 857, 859, 864, 867, 871, 874, 875, 881, 883, 885, 890, 892, 894, 899, 900, 901
Offset: 1
Keywords
Examples
496 is a term because 496 = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 7): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 4]) for x in range(len(rets)): print(rets[x])