A345552 Numbers that are the sum of ten cubes in four or more ways.
225, 232, 251, 258, 265, 272, 284, 286, 288, 291, 307, 310, 314, 321, 323, 328, 342, 347, 349, 356, 363, 366, 373, 375, 377, 380, 382, 384, 389, 391, 398, 399, 401, 403, 405, 408, 410, 412, 414, 415, 417, 419, 421, 422, 424, 427, 429, 434, 436, 438, 440, 441
Offset: 1
Keywords
Examples
232 is a term because 232 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 = 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 10): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 4]) for x in range(len(rets)): print(rets[x])