A345572 Numbers that are the sum of seven fourth powers in six or more ways.
10787, 15396, 15411, 15586, 15651, 16611, 16626, 16676, 16691, 16866, 17347, 17956, 17971, 18867, 19156, 19236, 19251, 19411, 19426, 19491, 19666, 20035, 20706, 20771, 21012, 21187, 21252, 21267, 21332, 21397, 21412, 21442, 21492, 21507, 21572, 21621, 21636
Offset: 1
Keywords
Examples
15396 is a term because 15396 = 1^4 + 1^4 + 1^4 + 1^4 + 6^4 + 8^4 + 10^4 = 1^4 + 1^4 + 2^4 + 5^4 + 8^4 + 8^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 11^4 = 1^4 + 3^4 + 4^4 + 4^4 + 7^4 + 7^4 + 10^4 = 1^4 + 3^4 + 5^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 3^4 + 4^4 + 5^4 + 6^4 + 9^4 + 9^4.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**4 for x in range(1, 1000)] for pos in cwr(power_terms, 7): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 6]) for x in range(len(rets)): print(rets[x])