A345578 Numbers that are the sum of eight fourth powers in three or more ways.
518, 2678, 2693, 2708, 2738, 2758, 2773, 2838, 2853, 2868, 2883, 2918, 2933, 2948, 2998, 3013, 3078, 3108, 3123, 3173, 3188, 3253, 3302, 3317, 3363, 3382, 3428, 3477, 3492, 3542, 3557, 3622, 3732, 3778, 3797, 3893, 3926, 3953, 3973, 3988, 4018, 4053, 4101
Offset: 1
Keywords
Examples
2678 is a term because 2678 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 3^4 + 6^4 + 6^4 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**4 for x in range(1, 1000)] for pos in cwr(power_terms, 8): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 3]) for x in range(len(rets)): print(rets[x])