A345597 Numbers that are the sum of ten fourth powers in four or more ways.
1620, 2660, 2725, 2740, 2835, 2855, 2870, 2900, 2915, 2920, 2935, 2950, 2965, 2980, 3000, 3015, 3030, 3045, 3095, 3110, 3160, 3175, 3190, 3205, 3220, 3240, 3255, 3270, 3285, 3335, 3350, 3415, 3430, 3445, 3460, 3479, 3510, 3525, 3544, 3559, 3574, 3589, 3639
Offset: 1
Keywords
Examples
2660 is a term because 2660 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 6^4 + 6^4 = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**4 for x in range(1, 1000)] for pos in cwr(power_terms, 10): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 4]) for x in range(len(rets)): print(rets[x])