cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345589 Numbers that are the sum of nine fourth powers in five or more ways.

Original entry on oeis.org

3189, 4149, 4229, 4244, 4309, 4374, 4404, 4419, 4469, 4484, 4549, 4659, 4724, 4853, 4899, 5028, 5093, 5139, 5189, 5204, 5269, 5284, 5349, 5379, 5414, 5444, 5459, 5509, 5524, 5574, 5589, 5619, 5634, 5654, 5684, 5699, 5749, 5764, 5814, 5829, 5939, 6068, 6133
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			4149 is a term because 4149 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 8^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 = 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 = 4^4 + 4^4 + 4^4 + 4^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 5])
        for x in range(len(rets)):
            print(rets[x])

A345553 Numbers that are the sum of ten cubes in five or more ways.

Original entry on oeis.org

288, 349, 382, 384, 401, 403, 408, 410, 414, 415, 417, 421, 429, 436, 440, 443, 447, 454, 455, 462, 466, 473, 475, 477, 480, 482, 487, 492, 496, 499, 501, 503, 506, 508, 510, 513, 515, 518, 520, 525, 527, 529, 532, 534, 536, 538, 539, 541, 543, 544, 545, 546
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			349 is a term because 349 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 5])
        for x in range(len(rets)):
            print(rets[x])

A345597 Numbers that are the sum of ten fourth powers in four or more ways.

Original entry on oeis.org

1620, 2660, 2725, 2740, 2835, 2855, 2870, 2900, 2915, 2920, 2935, 2950, 2965, 2980, 3000, 3015, 3030, 3045, 3095, 3110, 3160, 3175, 3190, 3205, 3220, 3240, 3255, 3270, 3285, 3335, 3350, 3415, 3430, 3445, 3460, 3479, 3510, 3525, 3544, 3559, 3574, 3589, 3639
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			2660 is a term because 2660 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 6^4 + 6^4 = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 4])
        for x in range(len(rets)):
            print(rets[x])

A345599 Numbers that are the sum of ten fourth powers in six or more ways.

Original entry on oeis.org

3175, 4150, 4230, 4390, 4405, 4455, 4470, 4485, 4500, 4550, 4565, 4630, 4725, 4740, 4915, 4980, 5094, 5109, 5155, 5190, 5205, 5220, 5270, 5285, 5350, 5365, 5395, 5430, 5445, 5460, 5475, 5525, 5540, 5590, 5605, 5635, 5655, 5670, 5700, 5715, 5735, 5765, 5780
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			4150 is a term because 4150 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 8^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 = 1^4 + 4^4 + 4^4 + 4^4 + 4^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 6])
        for x in range(len(rets)):
            print(rets[x])

A345857 Numbers that are the sum of ten fourth powers in exactly five ways.

Original entry on oeis.org

2935, 3110, 3190, 3205, 3270, 3445, 3814, 3940, 4165, 4180, 4195, 4215, 4245, 4260, 4290, 4310, 4325, 4375, 4420, 4435, 4615, 4660, 4675, 4695, 4774, 4805, 4854, 4869, 4870, 4900, 4934, 4965, 4999, 5029, 5030, 5044, 5045, 5095, 5110, 5125, 5140, 5174, 5235
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345598 at term 3 because 3175 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 = 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4.

Examples

			3110 is a term because 3110 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 6^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 7^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 5])
        for x in range(len(rets)):
            print(rets[x])

A345637 Numbers that are the sum of ten fifth powers in five or more ways.

Original entry on oeis.org

200009, 220350, 235658, 329271, 329810, 330052, 359211, 359453, 359498, 360298, 367314, 368529, 374519, 374847, 375089, 375870, 376620, 376651, 377159, 377643, 380283, 382622, 384395, 384934, 387035, 388933, 391736, 392064, 392095, 392275, 392306, 392339
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			220350 is a term because 220350 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 9^5 + 11^5 = 1^5 + 3^5 + 4^5 + 5^5 + 7^5 + 7^5 + 7^5 + 8^5 + 8^5 + 10^5 = 1^5 + 3^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5 + 8^5 + 8^5 + 10^5 = 2^5 + 4^5 + 4^5 + 4^5 + 6^5 + 7^5 + 7^5 + 7^5 + 9^5 + 10^5 = 2^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 6^5 + 8^5 + 9^5 + 10^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 5])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.