A345615 Numbers that are the sum of eight fifth powers in seven or more ways.
4104553, 4915506, 6011150, 6027989, 6323394, 6563733, 6622231, 6776363, 6785394, 7982834, 8181481, 8288806, 8625619, 8658144, 8710484, 8742208, 8773477, 8932244, 8996669, 9252219, 9253706, 9311478, 9773236, 9904983, 9976120, 10036233, 10045233, 10053008
Offset: 1
Keywords
Examples
4915506 is a term because 4915506 = 1^5 + 3^5 + 5^5 + 5^5 + 8^5 + 8^5 + 15^5 + 21^5 = 1^5 + 8^5 + 12^5 + 12^5 + 14^5 + 14^5 + 17^5 + 18^5 = 1^5 + 9^5 + 9^5 + 13^5 + 14^5 + 16^5 + 17^5 + 17^5 = 2^5 + 4^5 + 4^5 + 5^5 + 6^5 + 9^5 + 15^5 + 21^5 = 4^5 + 8^5 + 8^5 + 14^5 + 14^5 + 14^5 + 15^5 + 19^5 = 4^5 + 8^5 + 10^5 + 12^5 + 12^5 + 15^5 + 16^5 + 19^5 = 9^5 + 9^5 + 10^5 + 10^5 + 10^5 + 12^5 + 16^5 + 20^5.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..1000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**5 for x in range(1, 1000)] for pos in cwr(power_terms, 8): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 7]) for x in range(len(rets)): print(rets[x])