A345585
Numbers that are the sum of eight fourth powers in ten or more ways.
Original entry on oeis.org
17972, 17987, 19492, 19507, 19747, 20116, 20787, 21268, 21283, 21333, 21348, 21413, 21508, 21523, 21588, 21892, 21957, 22067, 22132, 22563, 22628, 23172, 23237, 23252, 23587, 23588, 23603, 23653, 23668, 23733, 23843, 23908, 24277, 24452, 24802, 24948, 25363
Offset: 1
17987 is a term because 17987 = 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 6^4 + 8^4 + 10^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 6^4 + 9^4 + 10^4 = 1^4 + 2^4 + 5^4 + 6^4 + 6^4 + 8^4 + 8^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 5^4 + 7^4 + 11^4 = 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 6^4 + 6^4 + 11^4 = 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 7^4 + 8^4 + 10^4 = 2^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 + 10^4 = 2^4 + 4^4 + 5^4 + 7^4 + 7^4 + 8^4 + 8^4 + 8^4 = 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 7^4 + 7^4 + 10^4 = 3^4 + 5^4 + 6^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 10])
for x in range(len(rets)):
print(rets[x])
A345617
Numbers that are the sum of eight fifth powers in nine or more ways.
Original entry on oeis.org
8742208, 15539667, 18913169, 19987308, 20135313, 21505583, 21512966, 21563089, 21727552, 22237510, 22256608, 22438990, 22545600, 22686818, 22932525, 23106589, 23122550, 23189782, 23221517, 23287858, 23346048, 23477344, 23798742, 23847285, 23931325, 24138358
Offset: 1
15539667 is a term because 15539667 = 1^5 + 1^5 + 2^5 + 10^5 + 12^5 + 17^5 + 18^5 + 26^5 = 1^5 + 1^5 + 7^5 + 7^5 + 10^5 + 16^5 + 19^5 + 26^5 = 1^5 + 4^5 + 7^5 + 9^5 + 13^5 + 13^5 + 13^5 + 27^5 = 1^5 + 7^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 + 27^5 = 2^5 + 2^5 + 3^5 + 8^5 + 9^5 + 16^5 + 23^5 + 24^5 = 3^5 + 5^5 + 10^5 + 19^5 + 19^5 + 20^5 + 20^5 + 21^5 = 3^5 + 10^5 + 12^5 + 12^5 + 18^5 + 18^5 + 20^5 + 24^5 = 4^5 + 11^5 + 13^5 + 13^5 + 15^5 + 15^5 + 22^5 + 24^5 = 5^5 + 6^5 + 13^5 + 15^5 + 15^5 + 19^5 + 20^5 + 24^5 = 6^5 + 9^5 + 11^5 + 11^5 + 15^5 + 21^5 + 22^5 + 22^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 9])
for x in range(len(rets)):
print(rets[x])
A345627
Numbers that are the sum of nine fifth powers in ten or more ways.
Original entry on oeis.org
4157156, 4492410, 4510461, 4915538, 4948274, 5005474, 5015506, 5179747, 5219655, 5252477, 5739988, 5756794, 6323426, 6326519, 6382443, 6423394, 6654999, 6705284, 6793170, 6861218, 7101038, 7147645, 7147656, 7148679, 7266240, 7280391, 7283268, 7314187, 7413493
Offset: 1
4492410 is a term because 4492410 = 1^5 + 1^5 + 2^5 + 3^5 + 5^5 + 7^5 + 7^5 + 13^5 + 21^5 = 1^5 + 2^5 + 6^5 + 10^5 + 11^5 + 11^5 + 14^5 + 16^5 + 19^5 = 1^5 + 6^5 + 7^5 + 8^5 + 9^5 + 9^5 + 14^5 + 18^5 + 18^5 = 2^5 + 5^5 + 6^5 + 6^5 + 7^5 + 15^5 + 15^5 + 16^5 + 18^5 = 2^5 + 5^5 + 6^5 + 10^5 + 10^5 + 11^5 + 11^5 + 15^5 + 20^5 = 3^5 + 3^5 + 7^5 + 7^5 + 9^5 + 12^5 + 13^5 + 18^5 + 18^5 = 3^5 + 3^5 + 8^5 + 8^5 + 8^5 + 12^5 + 12^5 + 17^5 + 19^5 = 3^5 + 4^5 + 6^5 + 7^5 + 8^5 + 13^5 + 14^5 + 16^5 + 19^5 = 4^5 + 4^5 + 4^5 + 7^5 + 11^5 + 11^5 + 13^5 + 18^5 + 18^5 = 4^5 + 4^5 + 6^5 + 8^5 + 8^5 + 9^5 + 16^5 + 17^5 + 18^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 9):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 10])
for x in range(len(rets)):
print(rets[x])
A345643
Numbers that are the sum of seven fifth powers in ten or more ways.
Original entry on oeis.org
134581976, 189642309, 219063107, 235438301, 252277376, 275782407, 281935070, 290928076, 300919884, 308188849, 309631268, 315635200, 322947868, 327287951, 335530174, 342030094, 358852218, 361946949, 379913293, 384699424, 387538625, 391133568
Offset: 1
189642309 is a term because 189642309 = 1^5 + 1^5 + 2^5 + 19^5 + 30^5 + 36^5 + 40^5 = 1^5 + 2^5 + 6^5 + 7^5 + 18^5 + 20^5 + 45^5 = 1^5 + 6^5 + 21^5 + 27^5 + 29^5 + 36^5 + 39^5 = 2^5 + 9^5 + 19^5 + 23^5 + 33^5 + 33^5 + 40^5 = 3^5 + 4^5 + 21^5 + 28^5 + 29^5 + 34^5 + 40^5 = 6^5 + 7^5 + 11^5 + 29^5 + 33^5 + 36^5 + 37^5 = 7^5 + 12^5 + 17^5 + 20^5 + 29^5 + 32^5 + 42^5 = 8^5 + 11^5 + 21^5 + 21^5 + 22^5 + 34^5 + 42^5 = 13^5 + 14^5 + 14^5 + 19^5 + 21^5 + 38^5 + 40^5 = 20^5 + 21^5 + 24^5 + 24^5 + 24^5 + 38^5 + 38^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 10])
for x in range(len(rets)):
print(rets[x])
A346335
Numbers that are the sum of eight fifth powers in exactly ten ways.
Original entry on oeis.org
15539667, 22932525, 24393600, 24650406, 24952961, 24953742, 25142513, 26001294, 27988486, 28609075, 29309819, 31794336, 32223105, 32527286, 32610600, 32807777, 32890541, 32998317, 33015125, 33187858, 33361339, 33550572, 33659175, 33782597, 34029369, 34073650
Offset: 1
15539667 is a term because 15539667 = 1^5 + 7^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 + 27^5 = 1^5 + 4^5 + 7^5 + 9^5 + 13^5 + 13^5 + 13^5 + 27^5 = 1^5 + 1^5 + 7^5 + 7^5 + 10^5 + 16^5 + 19^5 + 26^5 = 1^5 + 1^5 + 2^5 + 10^5 + 12^5 + 17^5 + 18^5 + 26^5 = 2^5 + 2^5 + 3^5 + 8^5 + 9^5 + 16^5 + 23^5 + 24^5 = 4^5 + 11^5 + 13^5 + 13^5 + 15^5 + 15^5 + 22^5 + 24^5 = 5^5 + 6^5 + 13^5 + 15^5 + 15^5 + 19^5 + 20^5 + 24^5 = 3^5 + 10^5 + 12^5 + 12^5 + 18^5 + 18^5 + 20^5 + 24^5 = 6^5 + 9^5 + 11^5 + 11^5 + 15^5 + 21^5 + 22^5 + 22^5 = 3^5 + 5^5 + 10^5 + 19^5 + 19^5 + 20^5 + 20^5 + 21^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 10])
for x in range(len(rets)):
print(rets[x])
Showing 1-5 of 5 results.
Comments