A345638 Numbers that are the sum of ten fifth powers in six or more ways.
392095, 392306, 399839, 406802, 407583, 434676, 491643, 492063, 520261, 521106, 538323, 538534, 540927, 553325, 555098, 563526, 582089, 592398, 608190, 611072, 614196, 637833, 639903, 640715, 640895, 640926, 640957, 641106, 643671, 653523, 655327, 656616
Offset: 1
Keywords
Examples
392306 is a term because 392306 = 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 8^5 + 9^5 + 10^5 + 10^5 + 10^5 = 1^5 + 1^5 + 2^5 + 4^5 + 4^5 + 7^5 + 8^5 + 8^5 + 9^5 + 12^5 = 1^5 + 2^5 + 3^5 + 3^5 + 4^5 + 5^5 + 8^5 + 8^5 + 11^5 + 11^5 = 2^5 + 2^5 + 3^5 + 3^5 + 3^5 + 6^5 + 7^5 + 9^5 + 9^5 + 12^5 = 2^5 + 2^5 + 3^5 + 4^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 = 2^5 + 2^5 + 3^5 + 4^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 12^5.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**5 for x in range(1, 1000)] for pos in cwr(power_terms, 10): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 6]) for x in range(len(rets)): print(rets[x])