A345669 Antidiagonal sums of array containing i-bonacci sequences nac(i,n), where nac(i,n) is the n-th i-bonacci number with nac(i,1..i) = 1 (see comments).
1, 2, 3, 5, 7, 12, 18, 31, 51, 89, 153, 273, 483, 870, 1571, 2860, 5225, 9603, 17711, 32805, 60967, 113685, 212610, 398723, 749615, 1412585, 2667549, 5047345, 9567527, 18166272, 34546857, 65793343, 125471295, 239584610, 458028439, 876628109, 1679581899
Offset: 1
Keywords
Programs
-
Maple
b:= proc(i, n) option remember; `if`(n=0, 0, `if`(n<=i, 1, add(b(i, n-j), j=1..i))) end: a:= n-> add(b(i+1, n-i), i=0..n): seq(a(n), n=1..37); # Alois P. Heinz, Jun 21 2021
-
Mathematica
b[i_, n_] := b[i, n] = If[n == 0, 0, If[n <= i, 1, Sum[b[i, n - j], {j, 1, i}]]]; a[n_] := Sum[b[i + 1, n - i], {i, 0, n}]; Table[a[n], {n, 1, 37}] (* Jean-François Alcover, Dec 27 2022, after Alois P. Heinz *)
Formula
a(n) = Sum_{i=1..n} of nac(i,n-i+1) = Sum_{i=1..n} of nac(n-i+1,i).
Comments