cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345669 Antidiagonal sums of array containing i-bonacci sequences nac(i,n), where nac(i,n) is the n-th i-bonacci number with nac(i,1..i) = 1 (see comments).

Original entry on oeis.org

1, 2, 3, 5, 7, 12, 18, 31, 51, 89, 153, 273, 483, 870, 1571, 2860, 5225, 9603, 17711, 32805, 60967, 113685, 212610, 398723, 749615, 1412585, 2667549, 5047345, 9567527, 18166272, 34546857, 65793343, 125471295, 239584610, 458028439, 876628109, 1679581899
Offset: 1

Views

Author

Christoph B. Kassir, Jun 21 2021

Keywords

Comments

Antidiagonal sum of below array:
1, 1, 1, 1, 1, 1, ... (1-bonacci numbers)
1, 1, 2, 3, 5, 8, ... (2-bonacci or Fibonacci numbers)
1, 1, 1, 3, 5, 9, ... (3-bonacci or tribonacci numbers)
1, 1, 1, 1, 4, 7, ... (4-bonacci or tetranacci numbers)
...

Crossrefs

Programs

  • Maple
    b:= proc(i, n) option remember; `if`(n=0, 0,
          `if`(n<=i, 1, add(b(i, n-j), j=1..i)))
        end:
    a:= n-> add(b(i+1, n-i), i=0..n):
    seq(a(n), n=1..37);  # Alois P. Heinz, Jun 21 2021
  • Mathematica
    b[i_, n_] := b[i, n] = If[n == 0, 0, If[n <= i, 1, Sum[b[i, n - j], {j, 1, i}]]];
    a[n_] := Sum[b[i + 1, n - i], {i, 0, n}];
    Table[a[n], {n, 1, 37}] (* Jean-François Alcover, Dec 27 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{i=1..n} of nac(i,n-i+1) = Sum_{i=1..n} of nac(n-i+1,i).