cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345734 Number of planar vertically indecomposable distributive lattices with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 0, 2, 1, 4, 2, 9, 6, 21, 18, 48, 50, 114, 135, 277, 358, 681, 935, 1693, 2425, 4235, 6258, 10643, 16085, 26852, 41226, 67921, 105456, 172125, 269375, 436785, 687409, 1109411, 1752966, 2819711, 4468025, 7170045, 11384240, 18238260, 28999047
Offset: 1

Views

Author

Bianca Newell, Jun 25 2021

Keywords

Crossrefs

Programs

  • PARI
    \\ S is symmetric only, V counts reflections separately.
    S(n)={my(M=matrix(n, sqrtint(n)), v=vector(n)); for(n=1, n, my(s=0); for(k=2, sqrtint(n), s += (k^2==n) + sum(j=2, k-1, v[n-k^2+j^2] - M[n-k^2+j^2, j]); M[n,k]=s); v[n]=s); v}
    V(n)={my(M=matrix(n, n\2), v=vector(n)); for(n=1, n, my(s=0); for(k=2, n\2, s += (2*k==n) + sum(j=2, min(k, n-2*k), v[n+j-2*k] - M[n+j-2*k, j-1]); M[n,k]=s); v[n]=s); v}
    seq(n)={(S(n)+V(n))/2 + vector(n, i, i<=2)} \\ Andrew Howroyd, Jan 24 2023

Extensions

Terms a(23) and beyond from Andrew Howroyd, Jan 24 2023