A345766 Numbers that are the sum of six cubes in exactly four ways.
626, 830, 837, 856, 873, 891, 947, 954, 982, 1008, 1026, 1052, 1053, 1071, 1094, 1097, 1106, 1109, 1134, 1143, 1150, 1153, 1172, 1195, 1208, 1227, 1234, 1253, 1267, 1278, 1279, 1283, 1286, 1290, 1297, 1316, 1323, 1324, 1358, 1361, 1368, 1369, 1376, 1395, 1403
Offset: 1
Keywords
Examples
830 is a term because 830 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 8^3 = 1^3 + 3^3 + 3^3 + 5^3 + 5^3 + 6^3 = 1^3 + 3^3 + 3^3 + 3^3 + 4^3 + 7^3 = 2^3 + 2^3 + 3^3 + 3^3 + 6^3 + 6^3.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..1211
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 6): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 4]) for x in range(len(rets)): print(rets[x])
Comments