A345767 Numbers that are the sum of six cubes in exactly five ways.
1045, 1169, 1241, 1260, 1384, 1432, 1440, 1495, 1530, 1539, 1549, 1556, 1558, 1584, 1594, 1602, 1612, 1617, 1640, 1654, 1657, 1675, 1703, 1712, 1715, 1719, 1729, 1736, 1745, 1747, 1754, 1771, 1780, 1792, 1801, 1803, 1806, 1810, 1818, 1825, 1827, 1834, 1843
Offset: 1
Keywords
Examples
1169 is a term because 1169 = 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 9^3 = 1^3 + 2^3 + 5^3 + 5^3 + 5^3 + 7^3 = 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 8^3 = 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 8^3 = 3^3 + 3^3 + 3^3 + 3^3 + 7^3 + 7^3.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..1227
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 6): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 5]) for x in range(len(rets)): print(rets[x])
Comments