A345780 Numbers that are the sum of seven cubes in exactly eight ways.
1385, 1515, 1552, 1557, 1585, 1587, 1603, 1613, 1622, 1655, 1665, 1674, 1681, 1718, 1719, 1739, 1741, 1746, 1753, 1755, 1765, 1767, 1782, 1793, 1805, 1809, 1811, 1818, 1819, 1826, 1828, 1830, 1833, 1838, 1856, 1870, 1873, 1881, 1901, 1905, 1931, 1935, 1937
Offset: 1
Keywords
Examples
1496 is a term because 1496 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 8^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 10^3 = 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 8^3 = 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 8^3 = 1^3 + 4^3 + 4^3 + 5^3 + 6^3 + 6^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 10^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 9^3 = 2^3 + 3^3 + 5^3 + 5^3 + 6^3 + 6^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3 + 7^3.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..343
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 7): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 8]) for x in range(len(rets)): print(rets[x])
Comments