A345784 Numbers that are the sum of eight cubes in exactly two ways.
132, 139, 158, 160, 167, 174, 181, 186, 193, 195, 197, 200, 212, 216, 219, 238, 244, 251, 258, 265, 272, 277, 288, 296, 298, 300, 301, 303, 307, 314, 315, 317, 321, 322, 327, 328, 329, 333, 334, 336, 338, 340, 341, 348, 350, 352, 356, 359, 360, 361, 363, 366
Offset: 1
Keywords
Examples
139 is a term because 139 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..173
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 8): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 2]) for x in range(len(rets)): print(rets[x])
Comments