A345785 Numbers that are the sum of eight cubes in exactly three ways.
223, 230, 237, 249, 263, 270, 275, 282, 284, 286, 289, 291, 293, 308, 310, 312, 319, 326, 345, 349, 354, 364, 371, 373, 375, 378, 380, 385, 386, 387, 389, 397, 399, 404, 406, 410, 412, 413, 415, 420, 423, 439, 441, 443, 446, 449, 452, 453, 459, 460, 465, 473
Offset: 1
Keywords
Examples
230 is a term because 230 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..198
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 8): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 3]) for x in range(len(rets)): print(rets[x])
Comments