A345786 Numbers that are the sum of eight cubes in exactly four ways.
256, 347, 382, 401, 408, 427, 434, 438, 445, 464, 478, 480, 490, 499, 502, 506, 511, 516, 523, 530, 532, 534, 537, 560, 565, 567, 569, 571, 578, 586, 593, 595, 600, 602, 604, 605, 611, 612, 616, 619, 621, 624, 626, 643, 645, 656, 660, 663, 664, 668, 675, 679
Offset: 1
Keywords
Examples
347 is a term because 347 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..207
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 8): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 4]) for x in range(len(rets)): print(rets[x])
Comments