A345787 Numbers that are the sum of eight cubes in exactly five ways.
471, 497, 504, 597, 623, 630, 635, 642, 649, 654, 661, 667, 680, 686, 691, 693, 712, 717, 723, 728, 736, 738, 741, 743, 752, 754, 755, 762, 774, 780, 781, 783, 784, 785, 788, 791, 793, 797, 800, 802, 804, 810, 813, 814, 815, 817, 819, 820, 821, 830, 834, 837
Offset: 1
Keywords
Examples
497 is a term because 497 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 6^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..180
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 8): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 5]) for x in range(len(rets)): print(rets[x])
Comments