A345789 Numbers that are the sum of eight cubes in exactly seven ways.
902, 908, 921, 938, 958, 963, 982, 991, 996, 1003, 1008, 1010, 1017, 1019, 1028, 1029, 1033, 1047, 1055, 1058, 1061, 1062, 1070, 1087, 1091, 1094, 1096, 1097, 1104, 1108, 1111, 1113, 1115, 1116, 1118, 1120, 1122, 1123, 1127, 1134, 1141, 1143, 1145, 1152, 1153
Offset: 1
Keywords
Examples
908 is a term because 908 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 6^3 + 7^3 = 1^3 + 1^3 + 2^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 3^3 + 5^3 + 5^3 + 5^3 + 5^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 7^3 = 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 6^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3 = 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..174
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 8): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 7]) for x in range(len(rets)): print(rets[x])
Comments