A345798 Numbers that are the sum of nine cubes in exactly six ways.
472, 498, 505, 507, 524, 596, 598, 605, 636, 643, 655, 661, 662, 669, 672, 676, 681, 688, 690, 692, 696, 706, 718, 722, 725, 728, 729, 731, 732, 737, 739, 742, 748, 749, 750, 751, 756, 765, 772, 782, 783, 785, 787, 788, 791, 793, 794, 800, 801, 802, 808, 810
Offset: 1
Keywords
Examples
498 is a term because 498 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 6^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 = 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..127
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 9): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 6]) for x in range(len(rets)): print(rets[x])
Comments