A345800 Numbers that are the sum of nine cubes in exactly eight ways.
744, 770, 805, 818, 840, 842, 844, 847, 866, 868, 877, 880, 883, 887, 894, 908, 909, 910, 911, 913, 915, 916, 920, 940, 945, 946, 948, 950, 952, 954, 955, 957, 961, 964, 965, 972, 976, 983, 987, 990, 1000, 1001, 1002, 1006, 1007, 1013, 1015, 1025, 1028, 1032
Offset: 1
Keywords
Examples
770 is a term because 770 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 8^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 7^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 7^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..93
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 9): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 8]) for x in range(len(rets)): print(rets[x])
Comments