A345805 Numbers that are the sum of ten cubes in exactly three ways.
197, 239, 246, 253, 260, 267, 277, 279, 281, 293, 295, 298, 300, 302, 303, 305, 309, 312, 316, 317, 319, 324, 326, 329, 330, 335, 336, 338, 340, 343, 344, 345, 351, 352, 354, 358, 361, 362, 364, 365, 368, 370, 379, 386, 387, 388, 392, 394, 395, 396, 402, 406
Offset: 1
Keywords
Examples
225 is a term because 225 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 = 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..93
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 10): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 3]) for x in range(len(rets)): print(rets[x])
Comments