A345811 Numbers that are the sum of ten cubes in exactly nine ways.
632, 651, 658, 688, 695, 714, 736, 740, 745, 752, 773, 778, 780, 790, 795, 799, 801, 812, 813, 815, 816, 818, 821, 823, 825, 841, 843, 849, 851, 852, 853, 855, 856, 857, 858, 864, 866, 873, 880, 882, 883, 885, 890, 891, 892, 899, 905, 908, 913, 922, 924, 926
Offset: 1
Keywords
Examples
651 is a term because 651 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 5^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 5^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..79
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 10): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 9]) for x in range(len(rets)): print(rets[x])
Comments