cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345815 Numbers that are the sum of six fourth powers in exactly three ways.

Original entry on oeis.org

2676, 2851, 2916, 4131, 4226, 4241, 4306, 4371, 4481, 4850, 5346, 5411, 5521, 5586, 5651, 6561, 6611, 6756, 6771, 6801, 6821, 6836, 6851, 6931, 7106, 7235, 7475, 7491, 7666, 7841, 7906, 7971, 8146, 8211, 8321, 8386, 8451, 8531, 8706, 9011, 9156, 9171, 9186
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345560 at term 18 because 6626 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 7^4 + 8^4 = 2^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4.

Examples

			2851 is a term because 2851 = 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 3])
        for x in range(len(rets)):
            print(rets[x])