A345819 Numbers that are the sum of six fourth powers in exactly seven ways.
21251, 43875, 48276, 49796, 53315, 58500, 59795, 59811, 67875, 68306, 69155, 69779, 71955, 72051, 72131, 73970, 74420, 74851, 77010, 80291, 80515, 81875, 82275, 84515, 86436, 86451, 86531, 87075, 88355, 88660, 88675, 90355, 91475, 93410, 93650, 94690, 95155
Offset: 1
Keywords
Examples
43875 is a term because 43875 = 1^4 + 2^4 + 9^4 + 9^4 + 10^4 + 12^4 = 2^4 + 2^4 + 2^4 + 5^4 + 11^4 + 13^4 = 2^4 + 2^4 + 5^4 + 7^4 + 7^4 + 14^4 = 2^4 + 5^4 + 6^4 + 9^4 + 11^4 + 12^4 = 3^4 + 7^4 + 8^4 + 9^4 + 10^4 + 12^4 = 4^4 + 4^4 + 7^4 + 7^4 + 10^4 + 13^4 = 5^4 + 7^4 + 8^4 + 8^4 + 8^4 + 13^4.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**4 for x in range(1, 1000)] for pos in cwr(power_terms, 6): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 7]) for x in range(len(rets)): print(rets[x])
Comments