A345826 Numbers that are the sum of seven fourth powers in exactly four ways.
2932, 4147, 4212, 4387, 5427, 5602, 5667, 6627, 6692, 6817, 6822, 6837, 6852, 6867, 7012, 7122, 7251, 7316, 7491, 7747, 7857, 8052, 8097, 8162, 8402, 8467, 8532, 8707, 8787, 9027, 9092, 9157, 9172, 9202, 9237, 9252, 9332, 9412, 9442, 9492, 9572, 9652, 9682
Offset: 1
Keywords
Examples
4147 is a term because 4147 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**4 for x in range(1, 1000)] for pos in cwr(power_terms, 7): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 4]) for x in range(len(rets)): print(rets[x])
Comments