A345838 Numbers that are the sum of eight fourth powers in exactly six ways.
6723, 6788, 6853, 6898, 6963, 7028, 7938, 8068, 8178, 8308, 8483, 8963, 9173, 9348, 9413, 9493, 9668, 9763, 9828, 10003, 10132, 10258, 10277, 10307, 10628, 10708, 10738, 10788, 10933, 10978, 11108, 11123, 11188, 11347, 11363, 11428, 11492, 11652, 11668, 11843
Offset: 1
Keywords
Examples
6788 is a term because 6788 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 4^4 + 7^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**4 for x in range(1, 1000)] for pos in cwr(power_terms, 8): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 6]) for x in range(len(rets)): print(rets[x])
Comments