cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A345878 G.f. A(x) satisfies: A(x) = x / exp(2 * Sum_{k>=1} A(x^k) / k).

Original entry on oeis.org

1, -2, 5, -18, 70, -282, 1179, -5104, 22634, -102128, 467637, -2168208, 10157664, -48005858, 228607728, -1095885048, 5284044080, -25609804110, 124693451466, -609641464746, 2991742731876, -14731354000792, 72761153346680, -360397156557696, 1789733084330806, -8909067981051118
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 28 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1, -2*add(a(n-k)*add(
          d*a(d), d=numtheory[divisors](k)), k=1..n-1)/(n-1))
        end:
    seq(a(n), n=1..26); # Alois P. Heinz, Jun 28 2021
  • Mathematica
    nmax = 26; A[] = 0; Do[A[x] = x/Exp[2 Sum[A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = 1; a[n_] := a[n] = -(2/(n - 1)) Sum[Sum[d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 1}]; Table[a[n], {n, 1, 26}]

Formula

G.f.: x * Product_{n>=1} (1 - x^n)^(2*a(n)).
a(n+1) = -(2/n) * Sum_{k=1..n} ( Sum_{d|k} d * a(d) ) * a(n-k+1).
Showing 1-1 of 1 results.