cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345904 Numbers ending in 1, 3, 7 or 9 that yield no primes if their first digit is changed to another nonzero digit.

Original entry on oeis.org

1071, 1149, 1183, 1401, 1509, 1611, 1771, 1773, 1809, 1891, 1921, 2071, 2149, 2183, 2401, 2509, 2611, 2771, 2773, 2809, 2891, 2921, 3071, 3149, 3183, 3401, 3509, 3611, 3771, 3773, 3809, 3891, 3921, 4071, 4149, 4183, 4401, 4509, 4611, 4771, 4773, 4809, 4891, 4921, 5071
Offset: 1

Views

Author

Tanya Khovanova, Jun 29 2021

Keywords

Comments

If a number is in this sequence, then all the numbers with the first digit changed to another nonzero digit are also in this sequence.
Numbers ending in 0, 2, 4, 5, 6, and 8 are not included by definition, because they are composite independently of the other digits.

Examples

			1071, 2071, 3071, 4071, 5071, 6071, 7071, 8071 and 9071 are all composite numbers. Thus, all of them are in this sequence.
		

Crossrefs

Subsequence of A045572.

Programs

  • Maple
    q:= n-> (l-> l[1] in [1, 3, 7, 9] and andmap(not isprime, [seq(parse
       (cat(j, seq(l[-i], i=2..nops(l)))), j=1..9)]))(convert(n, base, 10)):
    select(q, [$1..5080])[];  # Alois P. Heinz, Jun 29 2021
  • Mathematica
    Select[Range[1, 6000, 2], Take[IntegerDigits[#], -1] != {5} && CompositeQ[Table[FromDigits[Prepend[Rest[IntegerDigits[#]], n]], {n, 9}]] == {True, True, True, True, True, True, True, True, True} &]
    Select[Range[1,5100,2],NumberDigit[#,0]!=5&&NoneTrue[FromDigits/@Table[ PadRight[ {d},IntegerLength[#],IntegerDigits[#]],{d,9}],PrimeQ]&] (* Harvey P. Dale, Sep 24 2021 *)
  • Python
    from sympy import isprime
    def ok(n):
        if n < 10 or n%10 not in {1, 3, 7, 9}: return False
        s = str(n)[1:]
        return all(not isprime(int(d+s)) for d in "123456789")
    print(list(filter(ok, range(1, 6000, 2)))) # Michael S. Branicky, Jun 29 2021