cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345935 Number of divisors d of n for which A002034(d) = A002034(n), where A002034(n) is the smallest positive integer k such that n divides k!.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 4, 1, 4, 1, 3, 2, 2, 1, 2, 1, 2, 2, 3, 1, 2, 2, 4, 2, 2, 1, 6, 1, 2, 3, 2, 2, 4, 1, 3, 2, 4, 1, 4, 1, 2, 2, 3, 2, 4, 1, 2, 2, 2, 1, 6, 2, 2, 2, 4, 1, 4, 2, 3, 2, 2, 2, 2, 1, 2, 3, 3, 1, 4, 1, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Jul 02 2021

Keywords

Examples

			36 has 9 divisors: 1, 2, 3, 4, 6, 9, 12, 18, 36. When A002034 is applied to them, one obtains values [1, 2, 3, 4, 3, 6, 4, 6, 6], thus there are three divisors that obtain the maximal value 6 obtained at 36 itself, therefore a(36) = 3.
		

Crossrefs

Cf. A000005, A002034, A345934, A345936, A345944 (positions of 1's), A345945 (of terms > 1), A345950.
Cf. also A344590.

Programs

  • Mathematica
    a[n_]:=(m=1;While[Mod[m!,n]!=0,m++];m);Table[Length@Select[Divisors@k,a@#==a@k&],{k,100}] (* Giorgos Kalogeropoulos, Jul 03 2021 *)
  • PARI
    A002034(n) = if(1==n,n,my(s=factor(n)[, 1], k=s[#s], f=Mod(k!, n)); while(f, f*=k++); (k)); \\ After code in A002034.
    A345935(n) = { my(x=A002034(n)); sumdiv(n,d,A002034(d)==x); };

Formula

a(n) = Sum_{d|n} [A002034(d) = A002034(n)], where [ ] is the Iverson bracket.
a(n) = A000005(n) - A345936(n).
a(n) <= A345934(n).