cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A354991 Number of divisors d of n for which A344005(d) = A344005(n), where A344005(n) is the smallest positive integer m such that n divides m*(m+1).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 2, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 17 2022

Keywords

Crossrefs

Cf. A000005, A344005, A354990, A354992, A354994 (positions of 1's).
Cf. also A344590, A345935.

Programs

  • Mathematica
    s[n_] := Module[{m = 1}, While[! Divisible[m*(m + 1), n], m++]; m]; a[n_] := Module[{sn = s[n]}, 1 + DivisorSum[n, 1 &, # < n && s[#] == sn &]]; Array[a, 100] (* Amiram Eldar, Jun 17 2022 *)
  • PARI
    A344005(n) = for(m=1, oo, if((m*(m+1))%n==0, return(m))); \\ From A344005
    A354991(n) = { my(x=A344005(n)); sumdiv(n, d, A344005(d)==x); };

Formula

a(n) = Sum_{d|n} [A344005(d) = A344005(n)], where [ ] is the Iverson bracket.
a(n) = A000005(n) - A354992(n).
a(n) <= A354990(n).

A345936 Number of divisors d of n for which A002034(d) < A002034(n), where A002034(n) is the smallest positive integer k such that n divides k!.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 4, 1, 5, 2, 2, 2, 6, 1, 2, 2, 4, 1, 4, 1, 3, 4, 2, 1, 8, 2, 4, 2, 3, 1, 6, 2, 4, 2, 2, 1, 6, 1, 2, 3, 5, 2, 4, 1, 3, 2, 4, 1, 8, 1, 2, 4, 3, 2, 4, 1, 8, 3, 2, 1, 6, 2, 2, 2, 4, 1, 8, 2, 3, 2, 2, 2, 10, 1, 4, 3, 6, 1, 4, 1, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Jul 02 2021

Keywords

Examples

			36 has 9 divisors: 1, 2, 3, 4, 6, 9, 12, 18, 36. When A002034 is applied to them, one obtains values [1, 2, 3, 4, 3, 6, 4, 6, 6], thus there are six divisors that do not obtain the maximal value 6 obtained at 36 itself, therefore a(36) = 6.
		

Crossrefs

Cf. also A344589.

Programs

  • Mathematica
    a[n_]:=(m=1;While[Mod[m!,n]!=0,m++];m);Table[Length@Select[Divisors@k,a@#Giorgos Kalogeropoulos, Jul 03 2021 *)
  • PARI
    A002034(n) = if(1==n,n,my(s=factor(n)[, 1], k=s[#s], f=Mod(k!, n)); while(f, f*=k++); (k)); \\ After code in A002034.
    A345936(n) = { my(x=A002034(n)); sumdiv(n,d,A002034(d)
    				

Formula

a(n) = Sum_{d|n} [A002034(d) < A002034(n)], where [ ] is the Iverson bracket.
a(n) = A000005(n) - A345935(n).

A345944 Numbers k such that A002034(d) < A002034(k) for all the proper divisors d of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251, 256, 257, 263, 269, 271, 277, 281
Offset: 1

Views

Author

Antti Karttunen, Jul 04 2021

Keywords

Crossrefs

Subsequence of A000961.
Cf. A000040 (subsequence), A002034, A345945 (complement).
Positions of 1's in A345935 and in A345950 (characteristic function).
Cf. also A344881.

Programs

A345945 Numbers k that have such a proper divisor d for which A002034(d) = A002034(k).

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117
Offset: 1

Views

Author

Antti Karttunen, Jul 04 2021

Keywords

Examples

			21 = 3*7 is present because A002034(21) = 7 = A002034(7).
		

Crossrefs

Cf. A002034, A345944 (complement).
Positions of terms > 1 in A345935.
Union of A024619 and A345946.
Cf. also A344882.

Programs

A345934 Ordinal transform of Kempner numbers, A002034.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 4, 3, 2, 1, 4, 1, 2, 1, 4, 1, 5, 1, 1, 3, 2, 5, 4, 1, 2, 3, 6, 1, 6, 1, 4, 5, 2, 1, 6, 1, 2, 3, 4, 1, 2, 5, 7, 3, 2, 1, 7, 1, 2, 8, 2, 5, 6, 1, 4, 3, 9, 1, 7, 1, 2, 3, 4, 7, 6, 1, 8, 3, 2, 1, 10, 5, 2, 3, 8, 1, 9, 7, 4, 3, 2, 5, 3, 1, 2, 9, 4, 1, 6, 1, 8, 11
Offset: 1

Views

Author

Antti Karttunen, Jul 02 2021

Keywords

Comments

Number of values of k, 1 <= k <= n, with A002034(k) = A002034(n).

Crossrefs

Cf. also A344770.

Programs

  • Mathematica
    Table[Length@Select[Table[m=1;While[Mod[m!,k]!=0,m++];m,{k,n}],#==(m=1;While[Mod[m!,n]!=0,m++];m)&],{n,100}] (* Giorgos Kalogeropoulos, Jul 03 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A002034(n) = if(1==n,n,my(s=factor(n)[, 1], k=s[#s], f=Mod(k!, n)); while(f, f*=k++); (k)); \\ After code in A002034.
    v345934 = ordinal_transform(vector(up_to,n,A002034(n)));
    A345934(n) = v345934[n];

Formula

a(n) >= A345935(n).

A346088 Smallest divisor d of n for which A002034(d) = A002034(n), where A002034(n) is the smallest positive integer k such that k! is a multiple of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 4, 9, 5, 11, 4, 13, 7, 5, 16, 17, 9, 19, 5, 7, 11, 23, 4, 25, 13, 27, 7, 29, 5, 31, 32, 11, 17, 7, 9, 37, 19, 13, 5, 41, 7, 43, 11, 9, 23, 47, 16, 49, 25, 17, 13, 53, 27, 11, 7, 19, 29, 59, 5, 61, 31, 7, 32, 13, 11, 67, 17, 23, 7, 71, 9, 73, 37, 25, 19, 11, 13, 79, 16, 27, 41, 83, 7, 17, 43, 29, 11, 89
Offset: 1

Views

Author

Antti Karttunen, Jul 05 2021

Keywords

Examples

			36 has 9 divisors: 1, 2, 3, 4, 6, 9, 12, 18, 36. When A002034 is applied to them, one obtains values [1, 2, 3, 4, 3, 6, 4, 6, 6], thus there are three divisors that obtain the maximal value 6 obtained at 36 itself, of which divisor 9 is the smallest, and therefore a(36) = 9.
		

Crossrefs

Cf. also A344758.
Differs from A223491 for the first time at n=27, where a(27) = 27, while A223491(27) = 9.

Programs

  • PARI
    A002034(n) = if(1==n,n,my(s=factor(n)[, 1], k=s[#s], f=Mod(k!, n)); while(f, f*=k++); (k)); \\ After code in A002034.
    A346088(n) = { my(x=A002034(n)); fordiv(n,d,if(A002034(d)==x, return(d))); };

Formula

a(n) = n / A346089(n).

A346089 a(n) = n divided by the smallest divisor d of n for which A002034(d) = A002034(n), where A002034(n) is the smallest positive integer k such that k! is a multiple of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 3, 1, 1, 2, 1, 4, 3, 2, 1, 6, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 5, 4, 1, 2, 3, 8, 1, 6, 1, 4, 5, 2, 1, 3, 1, 2, 3, 4, 1, 2, 5, 8, 3, 2, 1, 12, 1, 2, 9, 2, 5, 6, 1, 4, 3, 10, 1, 8, 1, 2, 3, 4, 7, 6, 1, 5, 3, 2, 1, 12, 5, 2, 3, 8, 1, 10, 7, 4, 3, 2, 5, 3, 1, 2, 9, 4, 1, 6, 1, 8, 15
Offset: 1

Views

Author

Antti Karttunen, Jul 05 2021

Keywords

Crossrefs

Cf. A002034, A345935, A345936, A345944 (positions of 1's), A346088.
Cf. also A344759.
Differs from A302776 for the first time at n=27, where a(27) = 1, while A302776(27) = 3.

Programs

  • PARI
    A002034(n) = if(1==n,n,my(s=factor(n)[, 1], k=s[#s], f=Mod(k!, n)); while(f, f*=k++); (k)); \\ After code in A002034.
    A346089(n) = { my(x=A002034(n)); fordiv(n,d,if(A002034(d)==x, return(n/d))); };

Formula

a(n) = n / A346088(n).

A345946 Prime powers k that have such a proper divisor d for which A002034(d) = A002034(k).

Original entry on oeis.org

8, 64, 81, 128, 1024, 6561, 8192, 15625, 16384, 32768, 262144, 531441, 1594323, 2097152, 4194304, 5764801, 33554432, 129140163, 244140625, 268435456, 536870912, 1073741824, 2147483648, 10460353203, 17179869184, 137438953472, 274877906944, 847288609443, 2199023255552
Offset: 1

Views

Author

Antti Karttunen, Jul 04 2021

Keywords

Comments

Numbers k such that A345950(k) = 0 (or equivalently, A345935(k) > 1), and A010055(k) = 1.

Examples

			8 = 2^3 is present because A002034(8) = 4 = A002034(4).
		

Crossrefs

Intersection of A000961 and A345945.

Programs

  • PARI
    A002034(n) = if(1==n,n,my(s=factor(n)[, 1], k=s[#s], f=Mod(k!, n)); while(f, f*=k++); (k)); \\ After code in A002034.
    A345950(n) = { my(x=A002034(n)); fordiv(n,d,if(A002034(d)==x,return(d==n))); };
    isA345946(n) = (!isprime(n) && isprimepower(n) && !A345950(n));

Extensions

More terms from Jinyuan Wang, Jul 07 2021
Showing 1-8 of 8 results.