A345938 a(n) = uphi(n) / gcd(n-1, uphi(n)), where uphi is unitary totient (or unitary phi) function, A047994.
1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 6, 1, 6, 4, 1, 1, 8, 1, 12, 3, 10, 1, 14, 1, 12, 1, 2, 1, 8, 1, 1, 5, 16, 12, 24, 1, 18, 12, 28, 1, 12, 1, 30, 8, 22, 1, 30, 1, 24, 16, 12, 1, 26, 20, 42, 9, 28, 1, 24, 1, 30, 24, 1, 3, 4, 1, 48, 11, 8, 1, 56, 1, 36, 24, 18, 15, 24, 1, 60, 1, 40, 1, 36, 16, 42, 28, 70, 1, 32, 4, 66, 15
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
- Wikipedia, Lehmer's totient problem
Programs
-
Mathematica
uphi[1]=1;uphi[n_]:=Times@@(#[[1]]^#[[2]]-1&/@FactorInteger[n]); a[n_]:=uphi[n]/GCD[n-1,uphi[n]];Array[a,100] (* Giorgos Kalogeropoulos, Jun 30 2021 *)
-
PARI
A047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); }; A345938(n) = { my(u=A047994(n)); (u/gcd(n-1, u)); };
Comments