cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A344875 Multiplicative with a(2^e) = 2^(1+e) - 1, and a(p^e) = p^e - 1 for odd primes p.

Original entry on oeis.org

1, 3, 2, 7, 4, 6, 6, 15, 8, 12, 10, 14, 12, 18, 8, 31, 16, 24, 18, 28, 12, 30, 22, 30, 24, 36, 26, 42, 28, 24, 30, 63, 20, 48, 24, 56, 36, 54, 24, 60, 40, 36, 42, 70, 32, 66, 46, 62, 48, 72, 32, 84, 52, 78, 40, 90, 36, 84, 58, 56, 60, 90, 48, 127, 48, 60, 66, 112, 44, 72, 70, 120, 72, 108, 48, 126, 60, 72, 78, 124, 80, 120
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[2, e_] := 2^(e + 1) - 1; f[p_, e_] := p^e - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jun 03 2021 *)
  • PARI
    A344875(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^(f[2, i]+(2==f[1, i]))-1)); };
    
  • Python
    from math import prod
    from sympy import factorint
    def A344875(n): return prod((p**(1+e) if p == 2 else p**e)-1 for p, e in factorint(n).items()) # Chai Wah Wu, Jun 01 2022

Formula

a(n) = A344878(n) * A344879(n).
Multiplicative with a(p^e) = A153151(p^e). - Antti Karttunen, Jul 01 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = (4/5) * Product_{p prime} (1 - 1/(p*(p+1))) = (4/5) * A065463 = 0.563553... . - Amiram Eldar, Nov 18 2022

A345937 a(n) = gcd(n-1, uphi(n)), where uphi is unitary totient (or unitary phi) function, A047994.

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 6, 7, 8, 1, 10, 1, 12, 1, 2, 15, 16, 1, 18, 1, 4, 1, 22, 1, 24, 1, 26, 9, 28, 1, 30, 31, 4, 1, 2, 1, 36, 1, 2, 1, 40, 1, 42, 1, 4, 1, 46, 1, 48, 1, 2, 3, 52, 1, 2, 1, 4, 1, 58, 1, 60, 1, 2, 63, 16, 5, 66, 1, 4, 3, 70, 1, 72, 1, 2, 3, 4, 1, 78, 1, 80, 1, 82, 1, 4, 1, 2, 1, 88, 1, 18, 1, 4, 1, 2, 1, 96
Offset: 1

Views

Author

Antti Karttunen, Jun 29 2021

Keywords

Crossrefs

Programs

  • PARI
    A047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); };
    A345937(n) = gcd(n-1, A047994(n));

Formula

a(n) = gcd(n-1, A047994(n)).
a(n) = A047994(n) / A345938(n).
a(n) = (n-1) / A345939(n), for n > 1.
a(2n-1) = A345947(2n-1), for n >= 1.

A345948 a(n) = A344875(n) / gcd(A153151(n), A344875(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 4, 1, 14, 1, 18, 4, 1, 1, 24, 1, 28, 3, 10, 1, 30, 1, 36, 1, 14, 1, 24, 1, 1, 5, 16, 12, 8, 1, 54, 12, 20, 1, 36, 1, 70, 8, 22, 1, 62, 1, 72, 16, 28, 1, 78, 20, 18, 9, 28, 1, 56, 1, 90, 24, 1, 3, 12, 1, 112, 11, 24, 1, 120, 1, 108, 24, 42, 15, 72, 1, 124, 1, 40, 1, 84, 16, 126, 28, 50, 1, 96, 4, 22
Offset: 1

Views

Author

Antti Karttunen, Jul 01 2021

Keywords

Crossrefs

Programs

  • Mathematica
    {1}~Join~Array[#2/GCD @@ {##} & @@ {Which[# < 2, #, IntegerQ[Log2@ #], 2 # - 1, True, # - 1], Times @@ Map[If[#1 == 2, 2^(#2 + 1) - 1, #1^#2 - 1] & @@ # &, FactorInteger[#]]} &, 91, 2] (* Michael De Vlieger, Jul 06 2021 *)
  • PARI
    A153151(n) = if(!n,n,if(!bitand(n,n-1),(n+n-1),(n-1)));
    A344875(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^(f[2, i]+(2==f[1, i]))-1)); };
    A345948(n) = { my(u=A344875(n)); (u/gcd(A153151(n), u)); };

Formula

a(n) = A344875(n) / A345947(n) = A344875(n) / gcd(A153151(n), A344875(n)).
a(2n-1) = A345938(2n-1), for all n >= 1.

A345949 a(n) = A153151(n) / gcd(A153151(n), A344875(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 1, 1, 3, 1, 11, 1, 13, 7, 1, 1, 17, 1, 19, 5, 7, 1, 23, 1, 25, 1, 9, 1, 29, 1, 1, 8, 11, 17, 5, 1, 37, 19, 13, 1, 41, 1, 43, 11, 15, 1, 47, 1, 49, 25, 17, 1, 53, 27, 11, 14, 19, 1, 59, 1, 61, 31, 1, 4, 13, 1, 67, 17, 23, 1, 71, 1, 73, 37, 25, 19, 77, 1, 79, 1, 27, 1, 83, 21, 85, 43, 29, 1, 89, 5, 13, 23
Offset: 1

Views

Author

Antti Karttunen, Jul 01 2021

Keywords

Crossrefs

Programs

  • Mathematica
    {1}~Join~Array[#1/GCD @@ {##} & @@ {Which[# < 2, #, IntegerQ[Log2@ #], 2 # - 1, True, # - 1], Times @@ Map[If[#1 == 2, 2^(#2 + 1) - 1, #1^#2 - 1] & @@ # &, FactorInteger[#]]} &, 92, 2] (* Michael De Vlieger, Jul 06 2021 *)
  • PARI
    A153151(n) = if(!n,n,if(!bitand(n,n-1),(n+n-1),(n-1)));
    A344875(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^(f[2, i]+(2==f[1, i]))-1)); };
    A345949(n) = { my(u=A153151(n)); (u/gcd(u, A344875(n))); };

Formula

a(n) = A153151(n) / A345947(n) = A153151(n) / gcd(A153151(n), A344875(n)).
a(2n-1) = A345939(2n-1), for n > 1.
Showing 1-4 of 4 results.