A344875 Multiplicative with a(2^e) = 2^(1+e) - 1, and a(p^e) = p^e - 1 for odd primes p.
1, 3, 2, 7, 4, 6, 6, 15, 8, 12, 10, 14, 12, 18, 8, 31, 16, 24, 18, 28, 12, 30, 22, 30, 24, 36, 26, 42, 28, 24, 30, 63, 20, 48, 24, 56, 36, 54, 24, 60, 40, 36, 42, 70, 32, 66, 46, 62, 48, 72, 32, 84, 52, 78, 40, 90, 36, 84, 58, 56, 60, 90, 48, 127, 48, 60, 66, 112, 44, 72, 70, 120, 72, 108, 48, 126, 60, 72, 78, 124, 80, 120
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[2, e_] := 2^(e + 1) - 1; f[p_, e_] := p^e - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jun 03 2021 *)
-
PARI
A344875(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^(f[2, i]+(2==f[1, i]))-1)); };
-
Python
from math import prod from sympy import factorint def A344875(n): return prod((p**(1+e) if p == 2 else p**e)-1 for p, e in factorint(n).items()) # Chai Wah Wu, Jun 01 2022
Formula
Multiplicative with a(p^e) = A153151(p^e). - Antti Karttunen, Jul 01 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = (4/5) * Product_{p prime} (1 - 1/(p*(p+1))) = (4/5) * A065463 = 0.563553... . - Amiram Eldar, Nov 18 2022