cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A345947 a(n) = gcd(A153151(n), A344875(n)).

Original entry on oeis.org

1, 3, 2, 7, 4, 1, 6, 15, 8, 3, 10, 1, 12, 1, 2, 31, 16, 1, 18, 1, 4, 3, 22, 1, 24, 1, 26, 3, 28, 1, 30, 63, 4, 3, 2, 7, 36, 1, 2, 3, 40, 1, 42, 1, 4, 3, 46, 1, 48, 1, 2, 3, 52, 1, 2, 5, 4, 3, 58, 1, 60, 1, 2, 127, 16, 5, 66, 1, 4, 3, 70, 1, 72, 1, 2, 3, 4, 1, 78, 1, 80, 3, 82, 1, 4, 1, 2, 3, 88, 1, 18, 7, 4, 3, 2, 1, 96
Offset: 1

Views

Author

Antti Karttunen, Jul 01 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Array[GCD[Which[# < 2, #, IntegerQ[Log2@ #], 2 # - 1, True, # - 1], Times @@ Map[If[#1 == 2, 2^(#2 + 1) - 1, #1^#2 - 1] & @@ # &, FactorInteger[#]]] &, 97] (* Michael De Vlieger, Jul 06 2021 *)
  • PARI
    A153151(n) = if(!n,n,if(!bitand(n,n-1),(n+n-1),(n-1)));
    A344875(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^(f[2, i]+(2==f[1, i]))-1)); };
    A345947(n) = gcd(A153151(n), A344875(n));

Formula

a(n) = gcd(A153151(n), A344875(n)).
a(n) = A344875(n) / A345948(n).
a(n) = A153151(n) / A345949(n).
a(2n-1) = A345937(2n-1), for n >= 1.

A345939 a(n) = (n-1) / gcd(n-1, uphi(n)), where uphi is unitary totient (or unitary phi) function, A047994.

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 1, 1, 9, 1, 11, 1, 13, 7, 1, 1, 17, 1, 19, 5, 21, 1, 23, 1, 25, 1, 3, 1, 29, 1, 1, 8, 33, 17, 35, 1, 37, 19, 39, 1, 41, 1, 43, 11, 45, 1, 47, 1, 49, 25, 17, 1, 53, 27, 55, 14, 57, 1, 59, 1, 61, 31, 1, 4, 13, 1, 67, 17, 23, 1, 71, 1, 73, 37, 25, 19, 77, 1, 79, 1, 81, 1, 83, 21, 85, 43, 87, 1, 89, 5, 91
Offset: 1

Views

Author

Antti Karttunen, Jun 29 2021

Keywords

Crossrefs

Programs

  • Mathematica
    uphi[1]=1;uphi[n_]:=Times@@(#[[1]]^#[[2]]-1&/@FactorInteger[n]);
    a[n_]:=(n-1)/GCD[n-1,uphi[n]];Array[a,100] (* Giorgos Kalogeropoulos, Jul 02 2021 *)
  • PARI
    A047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); };
    A345939(n) = ((n-1) / gcd(n-1, A047994(n)));

Formula

a(n) = (n-1) / A345937(n) = (n-1) / gcd(n-1, A047994(n)).
a(2n-1) = A345949(2n-1), for n > 1.

A345948 a(n) = A344875(n) / gcd(A153151(n), A344875(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 4, 1, 14, 1, 18, 4, 1, 1, 24, 1, 28, 3, 10, 1, 30, 1, 36, 1, 14, 1, 24, 1, 1, 5, 16, 12, 8, 1, 54, 12, 20, 1, 36, 1, 70, 8, 22, 1, 62, 1, 72, 16, 28, 1, 78, 20, 18, 9, 28, 1, 56, 1, 90, 24, 1, 3, 12, 1, 112, 11, 24, 1, 120, 1, 108, 24, 42, 15, 72, 1, 124, 1, 40, 1, 84, 16, 126, 28, 50, 1, 96, 4, 22
Offset: 1

Views

Author

Antti Karttunen, Jul 01 2021

Keywords

Crossrefs

Programs

  • Mathematica
    {1}~Join~Array[#2/GCD @@ {##} & @@ {Which[# < 2, #, IntegerQ[Log2@ #], 2 # - 1, True, # - 1], Times @@ Map[If[#1 == 2, 2^(#2 + 1) - 1, #1^#2 - 1] & @@ # &, FactorInteger[#]]} &, 91, 2] (* Michael De Vlieger, Jul 06 2021 *)
  • PARI
    A153151(n) = if(!n,n,if(!bitand(n,n-1),(n+n-1),(n-1)));
    A344875(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^(f[2, i]+(2==f[1, i]))-1)); };
    A345948(n) = { my(u=A344875(n)); (u/gcd(A153151(n), u)); };

Formula

a(n) = A344875(n) / A345947(n) = A344875(n) / gcd(A153151(n), A344875(n)).
a(2n-1) = A345938(2n-1), for all n >= 1.
Showing 1-3 of 3 results.