A345965 a(1) = 1; for n>1, a(n) = phi(n) + a(n/p) where p is the least prime divisor of n.
1, 2, 3, 4, 5, 5, 7, 8, 9, 9, 11, 9, 13, 13, 13, 16, 17, 15, 19, 17, 19, 21, 23, 17, 25, 25, 27, 25, 29, 21, 31, 32, 31, 33, 31, 27, 37, 37, 37, 33, 41, 31, 43, 41, 37, 45, 47, 33, 49, 45, 49, 49, 53, 45, 51, 49, 55, 57, 59, 37, 61, 61, 55, 64, 61, 51, 67, 65, 67, 55
Offset: 1
Keywords
Links
- Peter Cameron, A new constant?, May 23 2021.
Programs
-
Maple
a:= proc(n) option remember; uses numtheory; `if`(n=1, 1, phi(n)+a(n/min(factorset(n)))) end: seq(a(n), n=1..80); # Alois P. Heinz, Jun 30 2021
-
Mathematica
a[1] = 1; a[n_] := a[n] = EulerPhi[n] + a[n/FactorInteger[n][[1, 1]]]; Array[a, 100] (* Amiram Eldar, Jun 30 2021 *)
-
PARI
a(n) = if (n==1, 1, eulerphi(n) + a(n/vecmin(factor(n)[,1])));
-
Python
from sympy import primefactors, totient as phi def a(n): return 1 if n == 1 else phi(n) + a(n//min(primefactors(n))) print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Jun 30 2021
Formula
a(p) = p for prime p.
a(n) = Sum_{k=0..bigomega(n)} phi(F^k(n)), where F^k(n) is the k-th iterate of F(n) = A032742(n). - Ridouane Oudra, Mar 17 2024