cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A344018 Table read by rows: T(n,k) (n >= 1, 1 <= k <= 2^n) is the number of cycles of length k which can be produced by a general n-stage feedback shift register.

Original entry on oeis.org

2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 3, 4, 2, 2, 1, 2, 3, 6, 7, 8, 12, 14, 17, 14, 13, 12, 20, 32, 16, 2, 1, 2, 3, 6, 9, 12, 20, 32, 57, 78, 113, 154, 208, 300, 406, 538, 703, 842, 1085, 1310, 1465, 1544, 1570, 1968, 2132, 2000, 2480, 2176, 2816, 4096, 2048
Offset: 1

Views

Author

N. J. A. Sloane, Jun 21 2021

Keywords

Comments

T(n,k) is the number of cycles of length k in the directed binary de Bruijn graph of order n.

Examples

			The first four rows of the triangle are
2, 1,
2, 1, 2, 1,
2, 1, 2, 3, 2, 3, 4, 2,
2, 1, 2, 3, 6, 7, 8, 12, 14, 17, 14, 13, 12, 20, 32, 16,
...
		

Crossrefs

Programs

  • Python
    import networkx as nx
    def deBruijn(n): return nx.MultiDiGraph(((0, 0), (0, 0))) if n==0 else nx.line_graph(deBruijn(n-1))
    def A344018_row(n):
      a=[0]*2**n
      for c in nx.simple_cycles(deBruijn(n)):
        a[len(c)-1]+=1
      return a # Pontus von Brömssen, Jun 28 2021

Formula

From Pontus von Brömssen, Jun 28 2021: (Start)
T(n,k) = A001037(k) for n >= k-1.
T(k-2,k) = A001037(k) - A000010(k).
T(k-3,k) = A001037(k) - 2*A346018(k,2) + 2 for k >= 5.
T(n,2^n-1) = 2*T(n,2^n) = 2*A016031(n).
(See page 157 in the paper by Bryant and Christensen.)
(End)
From Pontus von Brömssen, Jul 01 2021: (Start)
Conjectures by Bryant and Christensen (1983):
Conjecture 1: T(k-4,k) = A001037(k) - 4*A346018(k,3) - 2*gcd(k,2) + 10 for k >= 8.
Conjecture 2: T(k-5,k) = A001037(k) - 8*A346018(k,4) - gcd(k,3) + 19 for k >= 11.
Conjecture 3: T(k-6,k) = A001037(k) - 16*A346018(k,5) - 4*gcd(k,2) - 2*gcd(k,3) + 48 for k >= 15. (End)
Sum_{k=1..m} T(n, k) = A062692(m) for 1 <= m <= n + 1. - C.S. Elder, Nov 07 2023

Extensions

More terms from Pontus von Brömssen, Jun 28 2021
Showing 1-1 of 1 results.