A346051 G.f. A(x) satisfies: A(x) = 1 + x^2 + x^3 * A(x/(1 - x)) / (1 - x).
1, 0, 1, 1, 1, 2, 5, 12, 28, 68, 181, 531, 1671, 5491, 18627, 65299, 237880, 903907, 3580619, 14729777, 62639952, 274442521, 1236730244, 5729809348, 27292248240, 133614280479, 671803041553, 3464970976743, 18309428363425, 99010800275743, 547462187824465, 3093329527120022
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..695
Programs
-
Magma
function a(n) if n lt 3 then return (1+(-1)^n)/2; else return (&+[Binomial(n-3,j)*a(j): j in [0..n-3]]); end if; return a; end function; [a(n): n in [0..35]]; // G. C. Greubel, Nov 30 2022
-
Mathematica
nmax = 31; A[] = 0; Do[A[x] = 1 + x^2 + x^3 A[x/(1 - x)]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] a[0] = 1; a[1] = 0; a[2] = 1; a[n_] := a[n] = Sum[Binomial[n - 3, k] a[k], {k, 0, n - 3}]; Table[a[n], {n, 0, 31}]
-
SageMath
@CachedFunction def a(n): # a = A346051 if (n<3): return (1, 0, 1)[n] else: return sum(binomial(n-3, k)*a(k) for k in range(n-2)) [a(n) for n in range(51)] # G. C. Greubel, Nov 30 2022
Formula
a(0) = 1, a(1) = 0, a(2) = 1; a(n) = Sum_{k=0..n-3} binomial(n-3,k) * a(k).