cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346068 Numbers that are the product of distinct primes with prime subscripts raised to prime powers.

Original entry on oeis.org

1, 9, 25, 27, 121, 125, 225, 243, 289, 675, 961, 1089, 1125, 1331, 1681, 2187, 2601, 3025, 3125, 3267, 3375, 3481, 4489, 4913, 6075, 6889, 7225, 7803, 8649, 11881, 11979, 15125, 15129, 16129, 24025, 24649, 25947, 27225, 28125, 29403, 29791, 30375, 31329, 32041, 33275, 34969
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 30 2021

Keywords

Examples

			675 = 3^3 * 5^2 = prime(prime(1))^prime(2) * prime(prime(2))^prime(1), therefore 675 is a term.
		

Crossrefs

Intersection of A056166 and A076610.

Programs

  • Mathematica
    Join[{1}, Select[Range[35000], AllTrue[Join[PrimePi[(t = Transpose @ FactorInteger[#])[[1]]], t[[2]]], PrimeQ] &]] (* Amiram Eldar, Jul 30 2021 *)
  • Python
    from sympy import factorint, isprime, primepi
    def ok(n):
        f = factorint(n)
        if not all(isprime(e) for e in f.values()): return False
        return all(isprime(primepi(p)) for p in f)
    print(list(filter(ok, range(35000)))) # Michael S. Branicky, Jul 30 2021

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A006450} (1 + Sum_{q prime} 1/p^q) = 1.2271874... - Amiram Eldar, Jul 31 2021