A346068 Numbers that are the product of distinct primes with prime subscripts raised to prime powers.
1, 9, 25, 27, 121, 125, 225, 243, 289, 675, 961, 1089, 1125, 1331, 1681, 2187, 2601, 3025, 3125, 3267, 3375, 3481, 4489, 4913, 6075, 6889, 7225, 7803, 8649, 11881, 11979, 15125, 15129, 16129, 24025, 24649, 25947, 27225, 28125, 29403, 29791, 30375, 31329, 32041, 33275, 34969
Offset: 1
Keywords
Examples
675 = 3^3 * 5^2 = prime(prime(1))^prime(2) * prime(prime(2))^prime(1), therefore 675 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Join[{1}, Select[Range[35000], AllTrue[Join[PrimePi[(t = Transpose @ FactorInteger[#])[[1]]], t[[2]]], PrimeQ] &]] (* Amiram Eldar, Jul 30 2021 *)
-
Python
from sympy import factorint, isprime, primepi def ok(n): f = factorint(n) if not all(isprime(e) for e in f.values()): return False return all(isprime(primepi(p)) for p in f) print(list(filter(ok, range(35000)))) # Michael S. Branicky, Jul 30 2021
Formula
Sum_{n>=1} 1/a(n) = Product_{p in A006450} (1 + Sum_{q prime} 1/p^q) = 1.2271874... - Amiram Eldar, Jul 31 2021